Coupled Contaminant Transport Processes in the Vadose Zone

James R. Hunt

Department of Civil and Environmental Engr. University of California at Berkeley

Outline:

Tritium and ⁸⁵Kr at the Nevada Test Site
Groundwater/Vadose Zone Coupling
Vadose Zone/Atmosphere Coupling
Tritium at Lawrence Berkeley National Laboratory
Coupled Research for Coupled Processes

Acronym: TREES (Terrestrial Resource Energy Extraction System)

Cambric Cross Section

Cumulative Water Volume Pumped

Breakthrough of Tritium and 85Kr at Cambric

⁸⁵Kr Emplacement at Cambric

Predicted 85Kr Breakthrough at Cambric

Guell and Hunt, July 2003, WRR

Cambric Cross Section

Cambric Ditch, Summer 2002

Cambric Ditch Lysimeters

LYSIMETER LOCATIONS

CAMBRIC LYSIMETERS

WETTING FRONT MIGRATION

UNSATURATED FLOW MODELING

NONSTEADY - HORIZONTAL FLOW

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left[D(\theta) \frac{\partial \theta}{\partial x} \right] \qquad D(\theta) = K(h) \frac{\partial h}{\partial \theta}$$

PARTIAL SOLUTION FOR SEMI-INFINITE MEDIUM

$$\theta(x,t) = \theta(xt^{-1/2})$$

WETTING FRONT LOCATION $L_f(t) = \lambda_f t^{1/2}$

TRANSFORMATION OF CAMBRIC DATA

WETTING FRONT LOCATION $L_f(t) = \lambda_f t^{1/2}$

WETTING FRONT VELOCITY $v_t(t) = \frac{1}{2} \lambda_t t^{-1/2}$

TRITIUM ARRIVING AT (X, T) LEFT THE DITCH AT TIME T_d

$$\int_{X_a}^X dx = \int_{T_a}^T v_t(t) dt$$

SOLVING FOR T,

$$T_d = \left(T^{1/2} - \frac{X - X_o}{\lambda_t} \right)^2$$

FOUND $X_0 = 1.1 \text{ m AND } \lambda_f = 1.7 \text{ m yr}^{-1/2}$

PREDICTED TRITIUM AT D&E

Cambric Ditch Tree Ring Analysis for Tritium by AMS

LBNL: National Tritium Labeling Facility

- •Tritiated water vapor discharged for 30+ years
- •Trees grew around atmospheric discharge stack
- •Reported release data from 1969-2000 was compared to tree rings collected in 2001

Tritium Reconstruction from Tree Ring Analysis LBNL: National Tritium Labeling Facility

Love et al., ES&T, in press

LBNL: Predicting Tritium Exposure?

Number of Papers in Recent Literature that Addressed Coupled Thermal, Mechanical, Hydrologic and Chemical Processes

Experimental Data

Yow and Hunt (2002)

Typical Temporal and Spatial Scales of Experiments, Engineered Structures, and Natural Phenomena

Common Themes

- Field Data are Essential
 - Length scale of 100's of meters
 - Time scale of 10's of years
 - Need to take advantage of analog sites
- Measurements vs. Models
 - Ideally both needed
 - At the Nevada Test Site:
 - data plus model verified transport of ⁸⁵Kr
 - for vadose zone, model could be fit to data, but parameter was wrong
 - At LBNL: results solely dependent upon data from advanced instrumentation

Thanks: Margaret Guell, ⁸⁵Kr at Cambric Cindy Kao, Wetting Fronts at Cambric Adam Love, Tritium Analysis by AMS Dr. Andy Tompson, photographer

